Absolute binding-free energies between standard RNA/DNA nucleobases and amino-acid sidechain analogs in different environments
نویسندگان
چکیده
Despite the great importance of nucleic acid-protein interactions in the cell, our understanding of their physico-chemical basis remains incomplete. In order to address this challenge, we have for the first time determined potentials of mean force and the associated absolute binding free energies between all standard RNA/DNA nucleobases and amino-acid sidechain analogs in high- and low-dielectric environments using molecular dynamics simulations and umbrella sampling. A comparison against a limited set of available experimental values for analogous systems attests to the quality of the computational approach and the force field used. Overall, our analysis provides a microscopic picture behind nucleobase/sidechain interaction preferences and creates a unified framework for understanding and sculpting nucleic acid-protein interactions in different contexts. Here, we use this framework to demonstrate a strong relationship between nucleobase density profiles of mRNAs and nucleobase affinity profiles of their cognate proteins and critically analyze a recent hypothesis that the two may be capable of direct, complementary interactions.
منابع مشابه
Computational analysis of amino acids and their sidechain analogs in crowded solutions of RNA nucleobases with implications for the mRNA–protein complementarity hypothesis
Many critical processes in the cell involve direct binding between RNAs and proteins, making it imperative to fully understand the physicochemical principles behind such interactions at the atomistic level. Here, we use molecular dynamics simulations and 15 μs of sampling to study the behavior of amino acids and amino acid sidechain analogs in high-concentration aqueous solutions of standard RN...
متن کاملInteraction preferences between nucleobase mimetics and amino acids in aqueous solutions.
Despite the paramount importance of protein-nucleic acid interactions in different cellular processes, our understanding of such interactions at the atomistic level remains incomplete. We have used molecular dynamics (MD) simulations and 15 μs of sampling time to study the behavior of amino acids and amino-acid sidechain analogs in aqueous solutions of different mimetics of naturally occurring ...
متن کاملInteraction of Pyrimidine Nucleobases with Silicon Carbide Nanotube: Effect of Functionalization on Stability and Solvation
This study is about Complexes of Li doped silicon carbide nanotube with Thymine and Cytosine ingas phase and aqueous solutions. Li doped silicon carbide nanotube and its pyrimidine nucleobasecompounds were first modeled by Quantum mechanical calculations in gas phase and in water.Calculated binding energies indicated the stronger ability of thymine to functionalize silicon carbidenanotube than ...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملAromatic N versus aromatic F: bioisosterism discovered in RNA base pairing interactions leads to a novel class of universal base analogs
The thermodynamics of base pairing is of fundamental importance. Fluorinated base analogs are valuable tools for investigating pairing interactions. To understand the influence of direct base-base interactions in relation to the role of water, pairing free energies between natural nucleobases and fluorinated analogs are estimated by potential of mean force calculations. Compared to pairing of A...
متن کامل